首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16738篇
  免费   2480篇
  国内免费   6788篇
  2024年   25篇
  2023年   594篇
  2022年   597篇
  2021年   662篇
  2020年   1019篇
  2019年   1146篇
  2018年   1142篇
  2017年   1111篇
  2016年   1058篇
  2015年   1025篇
  2014年   1047篇
  2013年   1323篇
  2012年   966篇
  2011年   1009篇
  2010年   772篇
  2009年   1038篇
  2008年   948篇
  2007年   1035篇
  2006年   910篇
  2005年   863篇
  2004年   743篇
  2003年   774篇
  2002年   656篇
  2001年   578篇
  2000年   528篇
  1999年   499篇
  1998年   420篇
  1997年   362篇
  1996年   358篇
  1995年   324篇
  1994年   340篇
  1993年   269篇
  1992年   262篇
  1991年   208篇
  1990年   202篇
  1989年   184篇
  1988年   160篇
  1987年   117篇
  1986年   105篇
  1985年   115篇
  1984年   86篇
  1983年   36篇
  1982年   98篇
  1981年   65篇
  1980年   59篇
  1979年   48篇
  1978年   29篇
  1977年   18篇
  1976年   28篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   
102.
The effect of soil salinity and soil moisture on the growth and yield of maxipak wheat (Triticum aestivum L.) was studied in a lath-house experiment in whih, chloride-sulphate salt mixtures were used to artificially salinize a sandy loam soil from Al-Jadyriah Baghdad. Five soil salinity levels of ECe's equal to 1.7 (Control) 4.2, 5.8, 8.1, 9.4 and 11.0dSm–1 were prepared and used at 3 levels of available soil moisture depletion, namely, 25, 50, and 75% as determined by weight. Both growth (vegetative) and yield components were studied throughout the growing season.Results showed that increasing the soil salinity from 1.7 to 11.0 dSm–1, and decreasing the available soil water from 75 to 25% resulted in independent and significant decreases in Mazipak wheat growth and yield components at different stages of plant development. Root growth showed more sensitivity to both available soil water and soil salinity level than other components. It has been concluded that at soil salinity levels of more than 8.0 dSm–1, available soil water became a limiting factor on wheat growth and the maintenance of 75% of available soil water during the growth period is recommended to obtain satisfactory grain yield.  相似文献   
103.
Victor Chude 《Plant and Soil》1988,112(2):293-295
The profile distribution of total and extractable B was determined in 16 Nigerian cacao-growing soil profiles formed from different parent materials. Total B for all soils ranged from 8 to 54μgg−1 with a mean of 24μgg−1. The soils formed from sandstones in the rainforest zone contained higher amounts of total B than soils derived from basement complex. Boron extractable in hot water, in 0.1% CaCl2, and in 1N NH4OAc varied from 0.13 to 1.38, 0.44 to 1.20 0.03 to 0.56μgg−1 respectively. The corresponding means were 0.66, 0.75 and 0.27μgg−1 B. Soils on metamorphic rocks gave the highest values. All extractable B values were related to organic matter while only CaCl2-extractable B correlated with total B. Generally total and extractable B values were higher in the top soils than in the subsoils.  相似文献   
104.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   
105.
The fate of sheep urine-N applied to an upland grass sward at four dates representing widely differing environmental conditions, was followed in soil (0–20 cm) and in herbage. Urine was poured onto 1-m2 plots to simulate a single urination in August 1984 (warm and dry), May (cool), July and August 1985 (cool and wet) at rates equivalent to 40–52 g N m−2. The transformation of urine-N (61–69% urea-N) in soil over a 6–7 week period followed the same general pattern when applied at different times during the season; rapid hydrolysis of urea, the appearance of large amounts of urine-N as ammonium in soil extracts, and the appearance of nitrate about 14 days after application. The magnitude of “apparent” nitrification however differed markedly with environmental conditions, being greatest in May 1985 when a maximum of 76% of the inorganic soil N was in the form of nitrate. At all other application dates nitrate levels were relatively low. With the August 1984 application soil inorganic N returned to control levels (given water only) after 31 days but considerable amounts remained in soil for 60–90 days with the other applications. Weekly cuts to 3-cm indicated that increases in herbage dry matter and N yields in response to urine application were greatest in absolute terms after the May 1985 application and continued for at least 70 days with all applications. Relative to control plots the May application resulted in a 3-fold increase in herbage DM compared with corresponding values of 6-, 5-, and 7-fold increases with the August 1984, July and August 1985 applications. Recovery of urine-N in herbage was poor averaging only 17% of that applied at different dates, while recovery in soil extracts was incomplete. The exact routes of loss (volatilisation, leaching, denitrification or immobilisation) were not quantified but it is evident that substantial amounts of urine-N can be lost from the soil-plant system under upland conditions.  相似文献   
106.
Glycerol induced a limitation on photosynthetic carbon assimilation by phosphate when supplied to leaves of barley (Hordeum vulgare L.) and spinach (Spinacia oleracea L.). This limitation by phosphate was evidenced by (i) reversibility of the inhibition of photosynthesis by glycerol by feeding orthophosphate (ii) a decrease in light-saturated rates of photosynthesis and saturation at a lower irradiance, (iii) the promotion of oscillations in photosynthetic CO2 assimilation and in chlorophyll fluorescence, (iv) decreases in the pools of hexose monophosphates and triose phosphates and increases in the ratio of glycerate-3-phosphate to triose phosphate, (v) decreased photochemical quenching of chlorophyll fluorescence, and increased non-photochemical quenching, specifically of the component which relaxed rapidly, indicating that thylakoid energisation had increased. In barley there was a massive accumulation of glycerol-3-phosphate and an increase in the period of the oscillations, but in spinach the accumulation of glycerol-3-phosphate was comparatively slight. The mechanism(s) by which glycerol feeding affects photosynthetic carbon assimilation are discussed in the light of these results.Abbreviations Chl chlorophyll - C i intercellular concentration of CO2 - P phosphate - PGA glycerate-3-phosphate - Pi orthophosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate  相似文献   
107.
The aim of this work was to examine the effect of abrupt changes in temperature in the range 5 to 30°C upon the rate of photosynthetic carbon assimilation in leaves of barley (Hordeum vulgare L.). Measurement of the CO2-assimilation rate in relation to the intercellular partial pressure of CO2 at different temperatures and O2 concentrations and at saturating irradiance showed that as the temperature was decreased photosynthesis was saturated at progressively lower CO2 partial pressures and that the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rate became more abrupt. Feeding of orthophosphate to leaves resulted in an increased rate of CO2 assimilation at lower temperatures at around ambient or higher CO2 partial pressures both in 20% O2 and in 2% O2 and it removed the abruptness in the transition between the CO2-limited and ribulose-1,5-bisphosphate-regeneration-limited rates. Phosphate feeding tended to inhibit carbon assimilation at higher temperatures. The response of carbon assimilation to temperature was altered by feeding orthophosphate, by changing the concentrations of CO2 or of O2 or by leaving plants in the dark at 4°C for several hours. Similarly, the response of carbon assimilation to phosphate feeding or to changes in 2% O2 was altered by leaving the plants in the dark at 4°C. The mechanism of limitation of photosynthesis by an abrupt lowering of temperature is discussed in the light of the results.Abbreviations A rate of CO2 assimilation - P i intercellular partial pressure of CO2 - RuBP ribulose-1,5-bisphosphate  相似文献   
108.
Summary Neurospora crassa produces several structurally distinct siderophores: coprogen, ferricrocin, ferrichrome C and some minor unknown compounds. Under conditions of iron starvation, desferricoprogen is the major extracellular siderophore whereas desferriferricrocin and desferriferrichrome C are predominantly found intracellularly. Mössbauer spectroscopic analyses revealed that coprogen-bound iron is rapidly released after uptake in mycelia of the wild-typeN.crassa 74A. The major intracellular target of iron distribution is desferriferricrocin. No ferritin-like iron pools could be detected. Ferricrocin functions as the main intracellular iron-storage peptide in mycelia ofN. crassa. After uptake of ferricrocin in both the wild-typeN. crassa 74A and the siderophore-free mutantN. crassa arg-5 ota aga, surprisingly little metabolization (11%) could be observed. Since ferricrocin is the main iron-storage compound in spores ofN. crassa, we suggest that ferricrocin is stored in mycelia for inclusion into conidiospores.  相似文献   
109.
A total storage protein fraction was prepared from mustard (Sinapis alba L.) seeds via isolated protein bodies and characterized by sedimentation, immunological, and electrophoretic techniques. Mustard seed storage protein consists of three fractions (1) a “legumin-like” 13-S complex composed of two pairs of disulfide-linked polypeptides (16.5 + 28.5 kDa and 19.5 + 34 kDa, respectively) and two single polypeptides (18 kDa and 26 kDa), (2) a “vicilin-like” 9-S complex composed of two glycoproteins (64 kDa and 77 kDa), and (3) two small polypeptides (10 kDa and 11 kDa) which probably represent the 1.7-S complex found in other Cruciferae. In contrast to related species, no glycosylated polypeptide was found in the 13-S complex. Immunological relationships were found between the paired polypeptides of the 13-S complex but not between polypeptides of the 13-S complex and polypeptides of the 9-S complex. Pulse-chase labeling and in vitro translation of polysomal RNA from young embryos demonstrated that the polypeptides of the 13-S complex originate from high molecular mass precursors, except for the 18 kDa polypeptide which appears to be synthesized in its final size. The amino-acid composition of the major polypeptides of the mustard storage protein is given.  相似文献   
110.
应用电子探针对植物根际和根内营养元素微区分布的探讨   总被引:3,自引:0,他引:3  
用电子探针可检测出玉米、大豆根际和根内含有Na,Mg,Al,Si,P,S,Cl,K,Ca,Ti,Fe,Cu和Zn 13种元素。这些元素在根际土壤、粘液层和根组织内的含量分布有一定的规律性。除Si,Al,Ca,Fe在根际土壤中峰值较高外,Ti仅在土壤中达到可检测量;S,Fe和Zn富集在粘液层,Mg,P,Cl只在根组织内才有较明显的峰。这些规律可作为区分根—土界面的参考指标。K含量在根内明显高于根际土壤,并由表皮层到中柱径向增加;Ca则与K不同,且受植物种类的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号